Code: 20CS4501A

III B.Tech - I Semester - Regular Examinations - DECEMBER 2022

DATA SCIENCE (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.			
					Marks			
	UNIT-I							
1	a)	Summarize the steps and benefits of Data	L2	CO1	10 M			
		Preparation process with an example.						
	b)	Discuss Exploratory Data Analysis.	L2	CO1	4 M			
	OR							
2	a)	Illustrate the examples to improve your	L2	CO1	7 M			
		Business Understanding in Data science.						
	b)	Explain the popular metrics of model	L2	CO1	7 M			
		evaluation in Data Science.						
UNIT-II								
3	a)	Relate the need of Data Integration in	L3	CO2	6 M			
		preprocessing.						
	b)	Differentiate Normalization, Aggregation	L2	CO1	8 M			
		and Discretization.						
	OR							

4	a)	Show the different methods of Attribute	L3	CO2	10 M			
		subset selection process.						
	b)	Explain Attribute Selection measure.	L2	CO1	4 M			
	UNIT-III							
5	a)	Compare the following different discrete	L3	CO3	10 M			
		distribution models.						
		Uniform, Binomial, Bernoulli and Poisson.						
	b)	Explain Stratified sampling.	L2	CO1	4 M			
	OR							
6	a)	Illustrate the process of Student's T	L3	CO3	7 M			
		distribution with example.						
	b)	"Cluster sampling is a sampling plan used	L3	CO3	7 M			
		when mutually homogeneous yet internally						
		heterogeneous groupings are evident in a						
		statistical population". Infer the above						
		statement with examples.						
		UNIT-IV						
7	a)	Implement Linear Regression model with an	L3	CO4	8 M			
		example.						
	b)	Give a key note on Regression Coefficient	L2	CO1	6 M			
		and properties and assumptions of Linear						
		Regression.						
OR								
8	a)	Discuss the need for fitting the model in	L2	CO1	6 M			
		multiple regression.						
	b)	Illustrate Linear Discriminative analysis	L3	CO4	8 M			
		with an example.						

	UNIT-V							
9	a)	Explain the bias/ variance dilemma about	L2	CO1	7 M			
		the model complexity.						
	b)	Explain k-fold cross validation and how it	L3	CO4	7 M			
		can be implemented for building a model.						
	OR							
10	a)	How to calculate prediction error? Justify	L3	CO4	7 M			
		the answer by describing which is better						
		prediction or estimation?						
	b)	What is Minimum Description Length	L2	CO1	7 M			
		(MDL)? How MDL is used in Model Class						
		Selection?						